# Assessment of Market Reform Options to Enhance Reliability of the ERCOT System

**Prepared for the Public Utility Commission of Texas** 

**November 2022** 



### This report is prepared by:

Energy and Environmental Economics, Inc. (E3)

Zach Ming

David Delgado

Nick Schlag

Arne Olson

### Astrapé Consulting

Nick Wintermantel

Alex Dombrowsky

Rajaz Amitava

### This report is prepared for:

The Public Utility Commission of Texas (PUCT)

# **Table of Contents**

| Α | crony  | ms _  |                                                                                  | v   |
|---|--------|-------|----------------------------------------------------------------------------------|-----|
| G | ilossa | ry _  |                                                                                  | v   |
| 1 | Exe    | ecuti | ve Summary                                                                       | 1   |
|   | 1.1    | Me    | thods and Assumptions                                                            | 2   |
|   | 1.2    |       | llytical Results                                                                 |     |
|   | 1.3    |       | sitivity Analysis                                                                |     |
|   | 1.4    |       | Findings                                                                         |     |
|   | 1.5    | -     |                                                                                  |     |
| _ |        |       | Recommendation                                                                   |     |
| 2 | Int    | rodu  | iction                                                                           | 11  |
| 3 | De     | scrip | tion of Market Design Alternatives                                               | 13  |
|   | 3.1    | Loa   | d-Serving Entity Reliability Obligation (LSERO)                                  | 16  |
|   | 3.2    | For   | ward Reliability Market (FRM)                                                    | 18  |
|   | 3.3    | Per   | formance Credit Mechanism (PCM)                                                  | 21  |
|   | 3.4    | Bac   | kstop Reliability Service (BRS)                                                  | 25  |
|   | 3.5    | Dis   | patchable Energy Credits (DECs)                                                  | 27  |
|   | 3.6    | Dis   | patchable Energy Credit and Backstop Reliability Service Hybrid (DEC/BRS Hybrid) | 29  |
| 4 | Me     | etho  | dology and Assumptions                                                           | 30  |
|   | 4.1    | Ana   | ılytical Approach                                                                | 30  |
|   | 4.1    |       | SERVM Loss of Load Probability Model                                             |     |
|   | 4.1    | .2    | Analysis Under Market Equilibrium Conditions                                     | 31  |
|   | 4.1    | .3    | Future Scenarios Tested                                                          | 32  |
|   | 4.2    | Key   | Assumptions                                                                      | 33  |
|   | 4.2    |       | Load Forecast                                                                    | 2.2 |
|   | 4.2    | .2    | Ancillary Services                                                               |     |
|   | 4.2    | .3    | Energy-Only Market Design and Phase I Enhancements                               |     |
|   | 4.2    | .4    | Resource Portfolios                                                              |     |
|   | 4.2    | .5    | Renewable Profiles                                                               |     |
|   | 4.2    | .6    | Fuel Prices                                                                      |     |
|   | 4.2    | .7    | Planned and Unplanned Outages                                                    |     |
|   | 4.3    | Mo    | del Outputs                                                                      |     |
|   | 4.3    |       | Reliability Metrics                                                              |     |
|   |        | .2    |                                                                                  | 43  |

| 5 F        | Resul | Results                                                                                |  |
|------------|-------|----------------------------------------------------------------------------------------|--|
| 5.1        | . E   | nergy-Only Design                                                                      |  |
| 5.2        |       | Iternative Market Designs                                                              |  |
| 5          | 5.2.1 | Resource Portfolio                                                                     |  |
| 5          | 5.2.2 | Reliability                                                                            |  |
| 5          | 5.2.3 | Cost Metrics                                                                           |  |
| 6 9        | Sensi | tivity Analysis                                                                        |  |
| 6.1        | . н   | igh Renewables                                                                         |  |
| $\epsilon$ | 5.1.1 | Energy-Only Design                                                                     |  |
| 6          | 5.1.2 | Alternative Market Designs                                                             |  |
| 6.2        | . H   | igh Gas Price                                                                          |  |
| $\epsilon$ | 5.2.1 | Energy-Only Design                                                                     |  |
| $\epsilon$ | 5.2.2 | Alternative Market Designs                                                             |  |
| 6.3        | S N   | o ORDC                                                                                 |  |
| $\epsilon$ | 5.3.1 | Energy-Only Design                                                                     |  |
| $\epsilon$ | 5.3.2 | Alternative Market Designs                                                             |  |
| 6.4        | l Lo  | ow Cost of Retention Equilibrium                                                       |  |
| $\epsilon$ | 5.4.1 | Energy-Only Design                                                                     |  |
| $\epsilon$ | 5.4.2 | Alternative Market Designs                                                             |  |
| 6.5        | i L   | SERO, FRM, and PCM Technology Eligibility                                              |  |
| 7 (        | Quali | tative Review                                                                          |  |
| 7.1        |       | 1arket Power Risk                                                                      |  |
| 7.2        | 2 N   | Narket Competition & Efficiency                                                        |  |
| 7.3        | lr    | mplementation Timeline                                                                 |  |
| 7.4        | A     | dministrative Complexity                                                               |  |
| 7.5        | R     | eal-Time Performance Incentives and Penalties                                          |  |
| 7.6        | 5 A   | bility to Address Extreme Weather Events                                               |  |
| 7.7        | C     | ost and Revenue Stability                                                              |  |
| 7.8        | B Lo  | oad Migration                                                                          |  |
| 7.9        | ) D   | emand Response                                                                         |  |
| 7.1        | .0 P  | rior Precedent                                                                         |  |
| 8 <i>A</i> |       | ional Considerations and Implementation Options                                        |  |
| 8.1        |       | oad-Serving Entity Reliability Obligation (LSERO) and Forward Reliability Market (FRM) |  |
|            | 3.1.1 | Resource Accreditation                                                                 |  |
| 8          | 3.1.2 | Allocation of System Need to LSEs                                                      |  |

| 8.1.3    | Generator Performance Penalties                      | 96  |  |  |
|----------|------------------------------------------------------|-----|--|--|
| 8.1.4    |                                                      |     |  |  |
| 8.1.5    | Zonal/Geographic Construct                           | 98  |  |  |
| 8.1.6    |                                                      |     |  |  |
| 8.1.7    | Forward Procurement Timing                           |     |  |  |
| 8.1.8    | Market Power Mitigation                              | 104 |  |  |
| 8.2 Pe   | erformance Credit Mechanism (PCM)                    | 105 |  |  |
| 8.2.1    | Demand Curve Determination                           | 105 |  |  |
| 8.2.2    | LSE Performance Credit Obligation Determination      | 106 |  |  |
| 8.2.3    | Generator Performance Credit Production Structure    | 106 |  |  |
| 8.2.4    | Zonal/Geographic Structure                           | 107 |  |  |
| 8.2.5    | Seasonality                                          |     |  |  |
| 8.2.6    | Procurement Timing                                   |     |  |  |
| 8.2.7    | Market Power Mitigation                              |     |  |  |
| 8.3 Ba   | ackstop Reliability Service (BRS)                    | 108 |  |  |
| 8.3.1    | Procurement Mechanism                                |     |  |  |
| 8.3.2    | Cost Allocation                                      |     |  |  |
| 8.3.3    | Generator Performance Penalties                      |     |  |  |
| 8.3.4    | Forward Procurement Timing and Contracting           | 111 |  |  |
| 8.3.5    | Contract Duration                                    | 111 |  |  |
| 8.3.6    | Seasonality                                          |     |  |  |
| 8.3.7    | Retention of Energy Margins                          |     |  |  |
| 8.4 Di   | spatchable Energy Credits (DEC)                      | 112 |  |  |
| 8.4.1    | Procurement Mechanism                                | 113 |  |  |
| 8.4.2    | LSE Showing Timing                                   | 113 |  |  |
| 8.4.3    | DEC Eligibility Criteria and Generation Requirements | 113 |  |  |
| 8.4.4    | DEC Time Window Qualification                        | 114 |  |  |
| 8.4.5    | DEC Generation Requirements                          |     |  |  |
| 8.4.6    | System DEC Requirements                              | 115 |  |  |
| 8.4.7    | LSE Compliance Penalties                             |     |  |  |
| 8.4.8    | Distortionary Effect on Energy Markets               |     |  |  |
| 9 Conclu | usion                                                | 118 |  |  |
| 10 E3 R  | D E3 Recommendation 12                               |     |  |  |

9

# **Acronyms**

| Acronym | Definition                                   |
|---------|----------------------------------------------|
| 4CP     | 4 Coincident Peak                            |
| AS      | Ancillary Services                           |
| BRS     | Backstop Reliability Service                 |
| CDR     | Capacity, Demand and Reserves (ERCOT Report) |
| CONE    | Cost of New Entry                            |
| СТ      | Combustion Turbine                           |
| DEC     | Dispatchable Energy Credit                   |
| ECRS    | ERCOT Contingency Reserve Service            |
| ERS     | Emergency Response Service                   |
| EFOR    | Equivalent Forced Outage Rate                |
| EFORd   | Equivalent Forced Outage Rate on Demand      |
| ELCC    | Effective Load Carrying Capability           |
| ERCOT   | Electric Reliability Council of Texas        |
| EUE     | Expected Unserved Energy                     |
| E3      | Energy and Environmental Economics, Inc.     |
| FFRS    | Fast Frequency Response Service              |
| FRM     | Forward Reliability Market                   |
| IMM     | Independent Market Monitor                   |
| ISO     | Independent System Operator                  |
| LOLE    | Loss of Load Expectation                     |
| LOLH    | Loss of Load Hours                           |
| LOLP    | Loss of Load Probability                     |
| LR      | Load Resource                                |
| LSE     | Load Serving Entity                          |
| LSERO   | Load Serving Entity Reliability Obligation   |
| ORDC    | Operating Reserve Demand Curve               |
| PBPC    | Power Balance Penalty Curve                  |
| PCM     | Performance Credit Mechanism                 |
| PRD     | Price Responsive Demand                      |
| PUCT    | Public Utility Commission of Texas           |
| PUNS    | Private Use Networks                         |
| REC     | Renewable Energy Credit                      |
| RPS     | Renewable Portfolio Standard                 |
| RRS     | Responsive Reserve Service                   |
| SERVM   | Strategic Energy & Risk Valuation Model      |
| TDSP    | T&D Service Providers                        |

## **Glossary**

- + 1-Day-in-10-Years: Shorthand for a common electricity industry reliability standard that specifies that an electricity system must have sufficient generating resources to serve load all but one day every ten years. This standard is equivalent to 0.1 days per year loss of load expectation.
- + Accreditation: The process by which a generating unit is assigned a value that quantifies its contribution to system reliability. An accredited generator has *Effective Capacity* (see definition below).
- + Ancillary Services: The services necessary to support grid stability and security, including realtime operating reserves that maintain reliability despite expected and unexpected fluctuation in system demand and supply.
- + Backstop Resources: Resources that are held in reserve by ERCOT (i.e., not active participants in the electricity market) and are utilized to maintain reliability if needed due to insufficient other resources.
- + **Bilateral Procurement:** Procurement executed through individual contracts between a generator and an LSE.
- + Capacity Factor: The ratio of the electrical energy produced by a generating unit for the period considered relative to the electrical energy that could have been produced at continuous full power operation during the same period.
- + Centralized Procurement: Procurement executed through a centralized auction for all supply and demand in the market.
- + Cost of New Entry (CONE): The levelized all-in cost of a new resource, including capital expenditures, financing costs, and fixed operations and maintenance. This total cost is often normalized by generator capacity (kW) and then amortized over the life (years) of the resource into a final metric of "dollars per kilowatt per year" (\$/kW-yr). In this study, CONE is used primarily in reference to the marginal capacity resource (calculated through modeling to be a natural gas combustion turbine).
- + Cost of Retention: The levelized go-forward costs of an existing resource. In this study, the value refers to the levelized go-forward cost of the reference marginal retention resource (coal).
- + **Demand Response:** Reductions in electricity consumption by consumers in response to economic signals, with the goal of reducing usage during high reliability risk hours.
- + Dispatchable Energy Credit (DEC): A credit that is generated when energy or ancillary services are produced/provided from an eligible dispatchable resource. In this study, an eligible dispatchable resource must be able to start in 5 minutes or less, have less than a 9,000 Btu/kWh heat rate, and be able to dispatch continuously for 48 hours or more.
- + Equivalent Forced Outage Rate on Demand (EFORd): Measure of the probability that a generating unit will be forced offline (not be available due to forced outages or forced derating) when there is demand on the unit to generate; This is an input in reliability modeling and an important determinant of a resource's Effective Capacity.





Also available as part of the eCourse 2023 Renewable Energy Law eConference

First appeared as part of the conference materials for the  $18^{\rm th}$  Annual Renewable Energy Law Institute session "ERCOT Panel Discussion: Market Redesign"