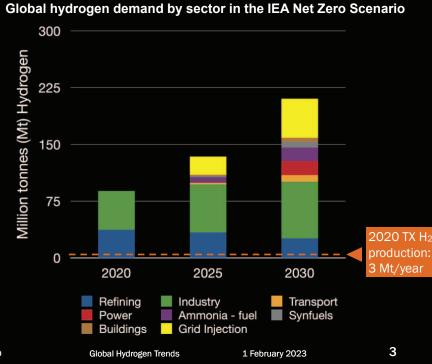
Global Hydrogen Trends and Opportunities

Emily Beagle, PhD UT CLE 1 February 2023

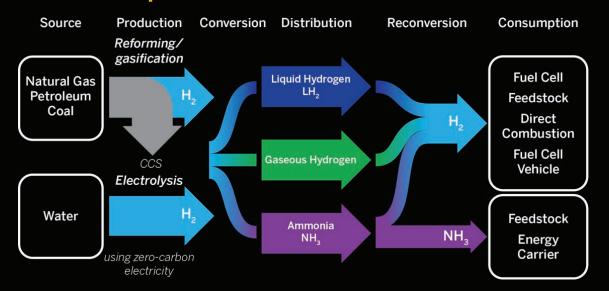
Background

Emily Beagle Global Hydrogen Trends 6 January 2023 **2**

Hydrogen is increasingly being considered a key


decarbonization tool

 Hydrogen (H₂) releases no greenhouse gases when used


- Can serve as a fuel, feedstock, or energy carrier
- Potential emission reduction applications across many sectors (industrial, transportation, electricity)

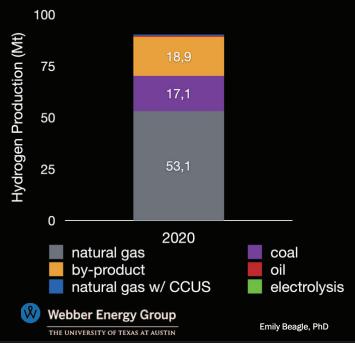
Emily Beagle, PhD

Energy usage and emissions across the hydrogen supply chain are an important consideration for its use

Hydrogen supply chain may look like some version of this - illustrative of different supply chain components

Webber Energy Group

THE UNIVERSITY OF TEXAS AT AUSTIN


Emily Beagle, PhD

Global Hydrogen Trends

1 February 2023

4

Current hydrogen production methods emit greenhouse gases

- •59% of global hydrogen produced by steam methane reforming (SMR) of natural gas \rightarrow ~9 kg CO₂/kg H₂
- 19% of global hydrogen produced from gasification of coal \rightarrow ~19 kg CO₂/kg H₂
- •Only 0.7% of global hydrogen production from steam methane reforming of natural gas with carbon capture and storage (CCUS) \rightarrow ~0.9 - 3.6 kg CO₂/kg H_2
- Negligible production of hydrogen from electrolysis

Global Hydrogen Trends

1 February 2023

Hydrogen production coded by 'color' misses some key considerations

Steam Methane Reforming (SMR Electrolysis with Renewable Steam Methane Reforming of Natural Gas (SMR) of Natural Gas with **Electricity** 'Grey Hydrogen' **CCUS** 'Green Hydrogen' 'Blue Hydrogen' Splits methane (CH₄) to produce H₂ Uses electricity to split water Adds carbon capture and with a by-product of CO₂ (H₂O) into H₂ and O₂ **1.**~9 kg CO₂/kg H₂ (at point of storage (CCUS) to SMR ·Lifecycle emissions are -~0.9 - 3.6 kg CO₂/kg H₂ production) dependent on electricity •Must also consider upstream (depending on capture rates) emissions emissions •Must also consider upstream Renewable electricity use Continued reliance on fossil fuel emissions yields zero-carbon hydrogen Negligible amount of global •Continued reliance on fossil fuel I feedstocks I feedstocks production currently **I**•~95% of US hydrogen production

Emily Beagle, PhD

Global Hydrogen Trends

1 February 2023

6

5

Find the full text of this and thousands of other resources from leading experts in dozens of legal practice areas in the <u>UT Law CLE eLibrary (utcle.org/elibrary)</u>

Title search: Global Hydrogen Trends and Opportunities

Also available as part of the eCourse 2023 Renewable Energy Law eConference

First appeared as part of the conference materials for the 18th Annual Renewable Energy Law Institute session "Trends and Recent Activity - Hydrogen Energy Projects"